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FORCED OSCILLATIONS AND THE RADIATION OF SOUND BY A 
CIRCULAR PLATE INTERACTIN6 WITH A FLUID * 

S.N. BESMENKOV 

A method is proposed for calculating forced oscillations and the acoustic 
radiation of a circular disc during its axially symmetric oscillations in 
an infinitely rigid baffle on the boundary of separation between fluid 
media. The dependence of the components of the deflection and the 
acoustic pressure on the excitation frequency as well as their 
distribution over the surface of the plate are investigated. 

The proposed method is simpler than the use of expansions over 
orthogonal systems of functions /i, 2/. It leads to a finite resolvent 
system which contains the values of the acoustic pressure at a series of 
fixed points on the surface of the disc as unknowns. Compared with the 
finite-difference method** (Golovanov V.A., Muzychenko V.V., Peker F.N. 
and Popov A.L., Scattering and sonic emission by elastic shells in a 
fluid, Preprint No.261, Inst. Problem Mekhaniki Akad. Nauk SSSR, Moscow, 
70 pp., 1985.) the proposed method enables one to attain the required 
accuracy using a smaller number of mesh points and leads to resolvent 
systems with better computational properties (according to the 
conditionality index). We also remark upon a method for determining the 
displacement potential of the fluid using a function of the deflection of 
the non-axially symmetrically oscillating disc /3/ and the results of 
experimental investigations of the hydroelastic oscillations of a disc 
/4, 5/. 

Consider the forced oscillations of a circular disc which is clamped in an infinitely 
rigid baffle on the boundary of separation between fluid half spaces. Omitting the time 
factor exp (--i~, we shall write the equation for the flexure of the disc taking account of 
the reaction of the acoustic media in the form 

wP~ikl.Matem.Mek~G~.,53,5,761-765,1989 
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DV'V2w--mm~w=q(r)+p(r), V'= d' 1 d ~, +-F~ (I) 

where w is the deflection of the disc, D and m are its cylindrical rigidity and linear mass, 
q (r) is the excitation load and p (r) is the sonic pressure on the disc (the difference 
between the pressures on its two sides). 

We shall seek a solution of Eq. (i), which satisfies the condition that the deflection 
on the contour of the disc must be equal to zero, in the form of a series in Bessel functions 

w = Y . k w k . r ~ ( z k r / a )  (2) 
where x k are the roots of the equation J0 (x)= 0, a is the radius of the disc .and ~k 
denotes summation over k from 1 to oo. 

In order to satisfy the remaining boundary condition, we apply a bending moment M to the 
contour of the disc. The total load on the disc will therefore consist of the excitation load 
q (r), the sonic pressure p (r) and also a load with an intensity q' which acts over the area 
of an annulus of thickness e I located at a distance e from the edge of the disc. In order 
to pass to the bending moment it is necessary to assume /6/ 

q'~ ~ P" P% ~-o M (3) 

Let us now expand the above-mentioned components of the transverse load in a series of 
Bessel functions. In doing this, we approximate the unknown function p (r) in the interval 
[0, a] by a piecewise linear function. By making use of the condition of orthogonality of 
Bessel functions, taking account of formula (3) and the approximation adopted for p (r), we 
find the coefficients of the expansions for the above-mentioned loads 

a 

qk --  a ' J , '  (=k) q (r) Jo xk - ~  r dr (4)~ 
a 

2M z~ 
qk' -- as j ,  (xk) ' P~ = Z'~PsZ~ 

Z 
aViS (zk) O-1)ar  Ar ~ zk 

/t 

( J - l )  Ar  

I ( '--2>Ar--r Io(xk- '~)  
Cj-~,) Ar 

] = 2 , 3  . . . . .  N ;  k = t ,  2 . . . .  

Here N is the number of segments into which the disc is subdivided, PI is the sonic 
pressure .at the mesh points and ~I denotes summation over $ from 1 to N-~ |, The ex - 
pression for zjk when ] = I,] =N~- I are obtained from the general formula after discarding 
the second and first integrals, respectively. 

Substitution of the expansions (2) and (4) into Eq.(1) enables one to find the coef- 
ficients 

I [ 2M Zk ] _ ~ '  D 
sk-- m(wkr_~s ) qk ~s 1'(=k) +Zjp,z~k , ~k s- a--~-~-. (5) 

The bending moment M is found from the second condition on the contour. By considering 
the case of restraint dw/dr Ir=a = 0, we obtain 

M = a__'_" Q* + Z p s, qkzk +I (=k) 
2 Q, . Q,=Zk--+,_+, 

xk s z~zkl, (z k) 
q, = ~k +k==j~-c'~_+, , s; = ~k 

- -  £0 k s - -  ( 0  s 

By substituting (6) into (5) and then into (2), we arrive at the following expression 
for the deflection of the disc: 

(7) 

The sonic pressure Ps in the half space z~0, which is the result of the emission 
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of sound by the disc, is determined by the Huygens' integral /7/ 

o,%fl  ~xp (,koB)d~ P2 (x, y, z) --  ~n w (x', y') t~ 
(,) 

/~ = [ (x '  - -  z )  ~ + ( / -  ~)~ + (z' - z)21 '/, 

(s) 

where R is the distance from the element dS to the point of observation, S is the area of 
the disc, P0 is the density of the medium, and k0 is the wave number. The pressure Pl in 
the half space z < 0 is written out in a similar manner. By transforming (8) to cylindrical 
coordinates r, 0 and gj we get the expression 

a 2~ 

~'pon ( I exp OkoRt) 
Pz = 2~ j w (p) Rt p d 0 d p  (9) 

o o 

Rt ~ = (1 - -  t )2Ar  2 -4- p~ - -  2 (l - -  t ) A r p  cos 0 

for the difference in the pressures at the point (r = (l -- l)Ar, z = 0). 
Here n is a parameter which is equal to 1 or 2 when the disc makes contact with the 

medium on one or two sides and the function w (p) is defined by formula (7). 
By putting I = 1,2,..., N + I in (9), we arrive at the system of algebraic equations 

for finding the values of the sonic pressure at the mesh points on the surfaces of the disc 

Eja t3p~=b  t, l = t , 2 , .  . , N + I  
alJ ~ ~ Z ~Ilk s, ~"J¢ xhlD: 2 a m  

~oh2 -- ~, 1~ ( x 0 (o~ a -- cos) 

{ t ,  z = j  

Rt p dO dp 
o o 

( t o )  

By separating out the real and imaginary parts in (i0) and solving the system of 2 (N+ 
i) equations resulting from this, we find the real and imaginary components of the sonic 
pressure at the nodes. Next, using formula (7), we calculate the deflection of the disc at 
the necessary points and the acoustic power of the radiation using the formula 

a 

N = + R e l p v * r d r  (.t2) 
o 

(v* is the complex con3ugate of the vibrational velocity). 
We note that, when ~-+~, the solution of system (i0) remains finite since terms 

which contain the difference ~ 2  in the denominator occur both in the coefficients 
of the system as well as on its right-hand sides. The deflection of the disc, which is 
determined by formula (7), also remains finite since, in the corresponding term, the numerator 
and the denominator simultaneously tend to zero. 

In the calculation it is necessary to omit the terms which go to infinity at the 
frequencies ~ = ~k (k = I, 2,...) in the sums (ii) and to introduce the additional unknown 
quantity w~ into system (I0), the coefficients accompanying which will be the integrals It~. 

The corresponding additional equation is obtained by equating the expression in the square 
brackets of formula (5) to zero. However, it is considerably simpler to carry out (starting 
from the continuity and boundedness of the functions p (r) and w (r)) an interpolation of the 
results obtained close to the frequency ~. We now present the results of a calculation of 
the forced oscillations and sonic emission of a circular steel disc of radius a = 0.6 m and 
with a thickness h= 10 -~ m which is excited at the centre by a concentrated forceF= 10 H The 
integrals ll~ in (ll) were calculated using Gaussian quadrature formulae, the number of 
segments into which the disc was subdivided was varied from 15 to 20 and the number of terms 
in the series was varied from i0 to 15. A further increase in these parameters had hardly 
any effect on the results over the range of variation of the excitation frequency which was 
considered. 

The dependences of the real and imaginary components of the deflection at the centre of 
the disc on the excitation frequency are shown by curves 1 and 2 in Fig.l for the case of one- 
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sided contact of the disc with water. The analogous dependences for the components of the 
sonic pressure at the centre are shown in Fig.2. It can be seen that, at certain excitation 
frequencies, the bending modulus and the sonic pressume modulus and their imaginary parts 

reach a maximum value while the real parts change sign. This corresponds to the first two 
resonances of the disc which, in the case of oscillations in vacuo are observed at the fre- 
quencies m, = 434 s -~ and m~ = 1700s-*. 

As might have been expected, the presence of a fluid leads to a displacement of the 
resonances of the disc towards lower frequencies. The distribution of the deflections over 
the radius of the disc at the first and second resonances is barely distinguishable from the 
corresponding forms of the oscillations in vacuo. At the higher resonance forms of the 
oscillations this difference becomes more noticeable and, in the case of the third resonance, 
it is illustrated in Table 1 which shows the ratios (w (r)/w (0)).103 for the following versions: 
a) for oscillations in vacuo, b) when there is one-sided contact with water and h/a = 1/30, 
c) as in b) but with h/a = 1/120. 
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Table 1 

Variant ,,,=o.i Io.5 o. 1o.7 o. 1o.9 
a 

b 
c 

813 
780 
780 

0.2 0.3 

280 --198 

282 --205 

284 --216 

--401 --262 

--396 --254 

---435 --322 

52 I 270 
60 267 

--12 220 

286 [ 110 
252 67 
238 67 

It can be seen from the results which have been presented that the lack of agreement 
between the forms of the resonance oscillations and the natural vibrational modes in vacuo is 
more pronounced at small relative thicknesses of the disc. Meanwhile, it is not so con- 
siderable as that which was noted in /8/ in the case of a strip plate which is explained by 
the localization of the higher resonant oscillations close to the centre of the disc. For 
comparison, we point out that, at the third resonance of a freely supported strip with a ratio 
All = 1150, the amplitude of the halfwave at z = I16 is approximately 0.8 of the amplitude 
when z = I/2. 

The sonic pressure distribution on the surface of the plate repeats, as a whole, the 
deflection distribution, but its value is non-zero on the contour and then further decays 
upon becoming more remote from the edge of the plate. What has been said above is illustrated 
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in Fig.3 where the dependences of Re p and Imp on the ratio r/a at the non-resonant 
frequency ~ = 2000 s -I (curves I and 2) and the third resonant frequency ~ = 2846s-qcurves 
3 and 4) are shown. The values of the pressure components are reduced with respect to the 
maximum value of one of them (the real part at the non-resonant frequency and the imaginary 

part at the resonant frequency). 
The frequency dependence (Curve I) of the coefficient 

s = N/No, No= ~/(4#m*~) 
of a circular steel disc of thickness h = 0.03 m and radius a = 0.6 m during its oscillations 
in air under the action of a concentrated force at the centre, is shown in Fig.4. The 
quantity No is the acoustic power of the radiation due to an infinite disc which is excited 
by a low-frequency concentrated force (~.. where ~, is the limit frequency of the 
plate /7/). An analogous curve 2 was obtained in the case of single-sided contact with water 

(No= F'o'/(i2~mcoa)). 
The results of the calculations show that the finite nature of the dimensions of the disc 

and the conditions under which it is clamped have an effect on the appearance and the position 
of the emission resonance maxima. As the frequency increases outside of the resonance zones, 
the acoustic emission powers of bounded and infinite discs approach one another and this 
takes place more rapidly in the case of a disc which radiates in air. We also note that, 
with the exception of the resonance frequencies, the effect of the aerial acoustic field on 
the oscillations of a disc is negligibly small. 
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